
Conferencing API
Programming Guide

August 2006

05-2505-001

Conferencing API Programming Guide – August 2006

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN
INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or
nuclear facility applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

This Conferencing API Programming Guide as well as the software described in it is furnished under license and may only be used or copied in
accordance with the terms of the license. The information in this manual is furnished for informational use only, is subject to change without notice,
and should not be construed as a commitment by Intel Corporation. Intel Corporation assumes no responsibility or liability for any errors or
inaccuracies that may appear in this document or any software that may be provided in association with this document.

Except as permitted by such license, no part of this document may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means without the express written consent of Intel Corporation.

Copyright © 2006, Intel Corporation

Dialogic, Intel, Intel logo, and Intel NetStructure are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.

* Other names and brands may be claimed as the property of others.

Publication Date: August 2006

Document Number: 05-2505-001

Intel
1515 Route 10
Parsippany, NJ 07054

For Technical Support, visit the Intel Telecom Support Resources website at:
http://developer.intel.com/design/telecom/support

For Products and Services Information, visit the Intel Telecom and Compute Products website at:
http://www.intel.com/design/network/products/telecom

For Sales Offices and other contact information, visit the Buy Telecom Products page at:
http://www.intel.com/buy/networking/telecom.htm

http://developer.intel.com/design/telecom/support
http://www.intel.com/design/network/products/telecom
http://www.intel.com/buy/networking/telecom.htm

Conferencing API Programming Guide – August 2006 3

Contents

Revision History . 5

About This Publication . 7
Purpose . 7
Applicability . 7
Intended Audience. 7
How to Use This Publication . 8
Related Information . 8

1 Product Description . 9

1.1 Overview . 9
1.2 Key Features . 9
1.3 Understanding How Conferences are Formed . 10
1.4 Relationship with Other Libraries. 11

1.4.1 Standard Runtime Library (SRL). 11
1.4.2 Device Management API Library . 11
1.4.3 Voice API Library . 12
1.4.4 IP Media Library API . 12
1.4.5 Global Call API Library . 12
1.4.6 Digital Network Interface API Library . 12

2 Programming Models . 13

2.1 Programming Models Overview. 13
2.2 Asynchronous Programming Model. 13

3 Event Handling . 15

3.1 SRL Event Management Functions . 15
3.2 SRL Standard Attribute Functions . 15

4 Error Handling . 17

5 Application Development Guidelines . 19

5.1 Using Symbolic Defines. 19
5.2 Using Conferencing Devices . 19
5.3 Creating a Conference. 20
5.4 Conference Bridging . 21
5.5 Terminating an Application . 22
5.6 Data Structure Considerations. 22
5.7 Multiprocessing Considerations. 23
5.8 Multithreading Considerations . 23

6 Using Active Talker . 25

7 Using Volume Control . 27

8 Building Applications. 29

8.1 Compiling and Linking . 29

4 Conferencing API Programming Guide – August 2006

Contents

8.1.1 Include Files. 29
8.1.2 Required Libraries . 30

8.2 Variables for Compiling and Linking . 31

Glossary . 33

Index . 37

Conferencing API Programming Guide — August 2006 5

Revision History

This revision history summarizes the changes made in each published version of this document.

Document No. Publication Date Description of Revisions

05-2505-001 August 2006 Initial version of document.

6 Conferencing API Programming Guide — August 2006

Revision History

Conferencing API Programming Guide — August 2006 7

About This Publication

The following topics provide more information about this publication:

• Purpose

• Applicability

• Intended Audience

• How to Use This Publication

• Related Information

Purpose

This publication provides programming guidelines for the conferencing API, supported in Intel
NetStructure® Host Media Processing Software for Linux* and Windows* operating systems. It is
a companion document to the Conferencing API Library Reference, which provides details on all
functions, parameters, and data structures in the conferencing API.

Applicability

This document (05-2505-001) is originally published for Intel NetStructure® Host Media
Processing Software Release 3.0 for Windows* operating system.

This document may also be applicable to later software releases (including service updates) on
Linux or Windows. Check the Release Guide for your software release to determine whether this
document is supported.

Intended Audience

This publication is intended for the following audience:

• Distributors

• System Integrators

• Toolkit Developers

• Independent Software Vendors (ISVs)

• Value Added Resellers (VARs)

• Original Equipment Manufacturers (OEMs)

• End Users

8 Conferencing API Programming Guide — August 2006

About This Publication

How to Use This Publication

This document assumes that you are familiar with the Linux* or Windows* operating systems and
the C programming language.

The information in this document is organized as follows:

• Chapter 1, “Product Description” introduces the key features of the conferencing software.

• Chapter 2, “Programming Models” provides a brief overview of supported programming
models.

• Chapter 3, “Event Handling” provides information on functions used to handle events.

• Chapter 4, “Error Handling” provides information on handling errors in your application.

• Chapter 5, “Application Development Guidelines” provides programming guidelines for
developing conferencing applications.

• Chapter 6, “Using Active Talker” provides details on using the active talker feature.

• Chapter 7, “Using Volume Control” provides details on using the volume control feature.

• Chapter 8, “Building Applications” discusses compiling and linking requirements such as
includes files and library files.

Related Information

Refer to the following sources for more information:

• For information about Standard Runtime Library features and guidelines for building all
applications, see the Standard Runtime Library API Programming Guide.

• For details on all functions and data structures in the Standard Runtime Library, see the
Standard Runtime Library API Library Reference.

• For details on all functions and data structures in the device management API, see the Device
Management API Library Reference.

• For information on the software release, system requirements, release features, and release
documentation, see the Release Guide for the software release you are using.

• For details on compatibility issues, restrictions and limitations, known problems, and late-
breaking updates or corrections to the release documentation, see the Release Update.

Be sure to check the Release Update for the system release you are using for any updates or
corrections to this publication. Release Updates are available on the Telecom Support
Resources website at http://resource.intel.com/telecom/support/releases/index.html.

http://resource.intel.com/telecom/support/releases/index.html

Conferencing API Programming Guide — August 2006 9

11.Product Description

This chapter provides an overview of the conferencing library. Topics include:

• Overview . 9

• Key Features . 9

• Understanding How Conferences are Formed. 10

• Relationship with Other Libraries . 11

1.1 Overview

The conferencing (CNF) software supports development of conferencing applications on Intel
NetStructure® Host Media Processing software. The conference can take place over an IP network
and/or over traditional PSTN lines.

Intel NetStructure® Host Media Processing (HMP) software performs media processing tasks on
general-purpose servers based on Intel architecture without the need for specialized hardware.
When installed on a system, HMP performs like a virtual DM3 board to the customer application,
but all media processing takes place on the host processor. In this document, the term “board”
represents the virtual DM3 board.

Note: This conferencing (CNF) API is distinct from and incompatible with the conferencing (CNF) API
that was previously released in Intel® Dialogic® System Release 6.0 on PCI for Windows.

1.2 Key Features

Key features of the conferencing (CNF) software include the following:

Asynchronous programming model support
This model enables multiple channels to be handled in a single process and supports higher
density conferencing solutions.

Support for conferees from multiple sources
Participants in a conference may come from a variety of sources, such as a voice device and an
IP media device. The software is designed for flexibility to grow and support additional
sources.

Conference bridging
Multiple conferences can be bridged together so that all parties (also called conferees) in two
or more established conferences can communicate with one another.

Coach/pupil feature
Two selected parties can establish a private communication link within the overall conference.
The coach is a private member of the conference and is only heard by the pupil. However, the
pupil cannot speak privately with the coach.

10 Conferencing API Programming Guide — August 2006

Product Description

DTMF digit detection
The application can determine whether a party has generated a DTMF digit.

Volume control
A party can adjust the listening volume of the conference using pre-programmed DTMF digits.

DTMF tone clamping
This feature mutes dual tone multi-frequency (DTMF) tones heard during a conference. Tone
clamping applies to the transmitted audio going into the conference and does not affect DTMF
function. It can be enabled on a board, conference, or party basis.

Automatic gain control (AGC)
AGC is an algorithm for normalizing an input signal to a target level. The AGC algorithm
discriminates between voiced and unvoiced signals within a conference.

Active talker
The active talker feature sums the three most active talkers in a conference, so that the
conversation doesn’t get drowned out when too many people talk at once.

Conference monitoring
Participants have listen-only access to a conference.

Echo cancellation
This feature reduces echo from the incoming signal, improving the quality of a conference for
all participants.

Tariff tone
A party can receive a periodic tone for the duration of the conference call.

1.3 Understanding How Conferences are Formed

Developing a conferencing application requires the use of the conferencing API library as well as
other Intel® Dialogic® API libraries, such as the Standard Runtime Library (SRL) and the device
management API library. Other libraries include the IP media and voice libraries.

A conference consists of conferees (also known as parties). The maximum number of conferences
and parties supported varies with the Intel NetStructure® Host Media Processing software license
in use and, if applicable, the media load in use on the board.

A conference is identified by a unique conference device handle, which is registered with the
Standard Runtime Library (SRL). A party is identified by a unique SRL party device handle. The
virtual board device is the parent device for the conference device and party device; it has a unique
SRL device handle. For more information on the types of conferencing devices, see Section 5.3,
“Creating a Conference”, on page 20.

The conferencing API is used to open a conference, and to add parties to a conference. However,
these parties cannot participate in a conference until they are connected to a technology device
handle through the dev_Connect() device management API function. Technology device handles
are obtained through the respective technology API library functions. For example, the dxxxB1C1
voice channel device handle is obtained from dx_open().

Conferencing API Programming Guide — August 2006 11

Product Description

A conference may be formed from parties that are connected to any one of the following
technology device handles:

• voice (dx) device handle

• IP media (ipm) device handle

• digital network interface (dti) device handle

Note: A device handle obtained from gc_OpenEx() in the Global Call API library cannot be used by
dev_Connect() to connect a party to a conference. Rather, you can use the device handle returned
by gc_GetResourceH() to connect a party to a conference.

1.4 Relationship with Other Libraries

A conferencing application is developed using the conferencing API library as well as other Intel®
Dialogic® API libraries, including the following:

• Standard Runtime Library (SRL)

• Device Management API Library

• Voice API Library

• IP Media Library API

• Global Call API Library

• Digital Network Interface API Library

1.4.1 Standard Runtime Library (SRL)

The Standard Runtime Library (SRL) provides a common interface for event handling and other
functionality common to all devices.

The conferencing API uses three types of devices: virtual board device, conference device, and
party device. The conferencing API registers the virtual board device with the Standard Runtime
Library (SRL) when cnf_Open() is called. In addition, the conference device and the party device
are registered when cnf_OpenConference() and cnf_OpenParty(), respectively, are called.
Conferencing events are posted to the SRL, which then delivers these events to the application. For
more information about SRL functions, see the Standard Runtime Library API Library Reference.

1.4.2 Device Management API Library

The device management API library provides run-time control and management of configurable
system devices. It includes functions to reserve resources and to manage the connections between
devices. It performs all necessary connection-related operations, including time slot management.

The device connection functions enable connection between conferencing devices and other
devices on HMP software, providing the ability for conferencing communication. Before a party
can participate in a conference, it must be connected to a supported technology device (such as
voice and IP media) using the dev_Connect() function. Conference bridging is also accomplished

12 Conferencing API Programming Guide — August 2006

Product Description

through the device management library. For more information about device management functions,
see the Device Management API Library Reference.

1.4.3 Voice API Library

The voice API provides a collection of functions supporting call processing such as dual tone
multifrequency (DTMF) detection, tone signaling, playing and recording. You may add a party to a
conference using a device handle obtained from dx_open(). You must then connect the voice
device to a conference using dev_Connect(). For more information about voice functions, see the
Voice API Library Reference.

1.4.4 IP Media Library API

The IP media library (IPML) API provides a collection of functions for media control on IP
devices. You may add a party to a conference using a device handle obtained from ipm_Open().
You must then connect the IP media device to a conference using dev_Connect(). For more
information about IP media functions, see the IP Media Library API Library Reference.

1.4.5 Global Call API Library

The Global Call API provides a collection of functions supporting call control operations. You may
add a party to a conference using a device handle obtained from gc_GetResourceH(). You must
then connect the device to a conference using dev_Connect(). For more information about Global
Call functions, see the Global Call API Library Reference.

1.4.6 Digital Network Interface API Library

The digital network interface API is used to manage digital network interface devices. You may
add a party to a conference using a device handle obtained from dt_open(). You must then connect
the device to a conference using dev_Connect(). For more information about digital network
interface functions, see the Digital Network Interface Software Reference.

Conferencing API Programming Guide — August 2006 13

22.Programming Models

This chapter describes the programming models supported by the conferencing software. The
following topics are covered:

• Programming Models Overview . 13

• Asynchronous Programming Model . 13

2.1 Programming Models Overview

The conferencing software supports application development using asynchronous programming
models. By usage, the asynchronous models are often said to use asynchronous mode.
Asynchronous mode programming is introduced briefly in this chapter and described in more detail
in the Standard Runtime Library API Programming Guide.

Note: The conferencing library is implemented as an asynchronous only library. If desired, you can
implement synchronous functionality in the application itself.

2.2 Asynchronous Programming Model

Asynchronous mode programming is characterized by allowing other processing to take place
while a function executes. In asynchronous mode programming, multiple channels are handled in a
single process rather than in separate processes as required in synchronous mode programming.

An asynchronous mode function typically receives an event from the Standard Runtime Library
(SRL) indicating completion (termination) of the function in order for the application to continue
processing a call on a particular channel. A function called in the asynchronous mode returns
control to the application after the request is passed to the device driver. A termination event is
returned when the requested operation completes.

Caution: In general, when a function is called in asynchronous mode, and an associated termination event
exists, the cnf_Close() function should not be called until the termination event has been received.

For Linux environments, the asynchronous models provided for application development include:

Asynchronous (Polled)
In this model, the application polls for or waits for events using the sr_waitevt() function.
When an event is available, event information may be retrieved using SRL event handling
functions such as sr_getevttype(). Retrieved event information is valid until the sr_waitevt()
function is called again. Typically, the polled model is used for applications that do not need to
use event handlers to process events.

Asynchronous with Event Handlers
This model may be run in non-signal mode only. Event handlers can be enabled or disabled for
specific events on specific devices.

14 Conferencing API Programming Guide — August 2006

Programming Models

Conferencing API Programming Guide — August 2006 15

33.Event Handling

All conferencing events are retrieved using Standard Runtime Library (SRL) event retrieval
mechanisms, including event handlers. The SRL is a device-independent library containing event
management functions and Standard Attribute functions. This chapter lists SRL functions that are
typically used by conferencing applications.

• SRL Event Management Functions . 15

• SRL Standard Attribute Functions. 15

3.1 SRL Event Management Functions

SRL event management functions retrieve and handle device termination events for certain library
functions. Applications typically use the following functions:

sr_enbhdlr()
enables event handler

sr_dishdlr()
disables event handler

sr_getevtdev()
gets device handle

sr_getevttype()
gets event type

sr_waitevt()
waits for next event

sr_waitevtEx()
waits for events on certain devices

Note: See the Standard Runtime Library API Library Reference for function details.

3.2 SRL Standard Attribute Functions

SRL Standard Attribute functions return general device information, such as the device name or the
last error that occurred on the device. Applications typically use the following functions:

ATDV_ERRMSGP()
pointer to string describing the error that occurred during the last function call on the specified
device

ATDV_LASTERR()
error that occurred during the last function call on a specified device. See the function
description for possible errors for the function.

16 Conferencing API Programming Guide — August 2006

Event Handling

ATDV_NAMEP()
pointer to device name

ATDV_SUBDEVS()
number of subdevices

Note: See the Standard Runtime Library API Library Reference for function details.

Conferencing API Programming Guide — August 2006 17

44.Error Handling

This chapter describes error handling for the conferencing software.

All conferencing functions return a value that indicates the success or failure of the function call.
Success is indicated by a return value of CNF_SUCCESS. Failure is indicated by a value of
CNF_ERROR.

If a function fails, call the Standard Attribute functions ATDV_LASTERR() and
ATDV_ERRMSGP() for the reason for failure. These functions are described in the Standard
Runtime Library API Library Reference.

If an error occurs during execution of an asynchronous function, the CNFEV_ERROR event is sent
to the application. No change of state is triggered by this event. Upon receiving the
CNFEV_ERROR event, the application can retrieve the reason for the failure using the standard
runtime library functions ATDV_LASTERR() and ATDV_ERRMSGP().

18 Conferencing API Programming Guide — August 2006

Error Handling

Conferencing API Programming Guide — August 2006 19

55.Application Development
Guidelines

This chapter contains guidelines for developing conferencing applications. The following topics
are covered:

• Using Symbolic Defines . 19

• Using Conferencing Devices . 19

• Creating a Conference . 20

• Conference Bridging . 21

• Terminating an Application . 22

• Data Structure Considerations . 22

• Multiprocessing Considerations . 23

• Multithreading Considerations . 23

5.1 Using Symbolic Defines

The numerical values of defines may not remain the same as new versions of the software are
released. It is recommended that you do not use a numerical value in your application when an
equivalent symbolic define is available. Symbolic defines are found in the header files; for
example, cnflib.h, cnfevts.h, cnferrs.h, and srllib.h.

5.2 Using Conferencing Devices

The types of devices used in the conferencing API library and their naming convention are as
follows:

• virtual board device, called cnfBx, where x is the logical board number

• conference device, called cnfBxCy, where x is the logical board number and y is the conference
device channel

• party device, called ptyBxPz, where x is the logical board number and z is the party device
channel

All devices are identified by a unique SRL handle. All subsequent references to the opened device
must be made using the handle, until the device is closed.

The virtual board device is the parent device for both the conference device and the party device.
You must open a virtual board device before opening a conference device or party device. After a
board device is opened, you can open and initialize all conference devices at once, and/or all party

20 Conferencing API Programming Guide — August 2006

Application Development Guidelines

devices at once. A conference device and a party device are independent; that is, you can open a
party device without first opening a conference device.

5.3 Creating a Conference

The following steps describe how to create a conference. See the Glossary for information on the
terms used here. See the Conferencing API Library Reference for details on conferencing functions
and data structures.

Note: These steps provide general guidelines. They do not cover all tasks required to write a conferencing
application.

1. Use the asynchronous programming model, and enable a Standard Runtime Library (SRL)
event handler for the various devices used by the conferencing software (virtual board,
conference, and party) via sr_enbhdlr().

2. Open the virtual board device handle using cnf_Open(). The device naming convention for
the virtual board is cnfBx, where x is the board number starting at 1. You must have a virtual
board device before you can open a conference device or a party device.

3. Get a count of the resources on this board using cnf_GetDeviceCount(). This count is a
snapshot in time. The CNF_DEVICE_COUNT_INFO data structure contains information
about the number of devices on this board, such as the maximum number of conferences and
parties, as well as the number of free conferences and free parties. The maximum number of
conferences and parties supported varies with the Intel NetStructure® Host Media Processing
software license in use and, if applicable, the media load in use on the board. Having a count of
the resources enables you to properly manage these resources.

4. If desired, specify attributes for the board using cnf_SetAttributes(). Attributes are contained
in the CNF_ATTR data structure. Use cnf_GetAttributes() to return the current attributes for
the board.

5. If desired, enable notification events for the board using cnf_EnableEvents(). Events are
contained in the CNF_EVENT_INFO data structure. For example, the application can be
notified dynamically whenever a conference is opened or a party is added.

6. At this point, you can choose to open and set up all conferences; or you can choose to open one
conference at a time as needed. Similarly, you can also choose to open and set up all parties, or
open one party at a time as needed. The steps that follow show how to open one conference,
then add a party to this opened conference. Repeat the steps as appropriate for your use case.

7. Using cnf_OpenConference(), create a new conference to which parties will be added. This
function takes the virtual board device handle returned by cnf_Open() as an argument. It
returns a unique SRL device handle for the conference. The conference created consumes a
conference resource.

8. If desired, specify attributes for the conference using cnf_SetAttributes(). Attributes are
contained in the CNF_ATTR data structure. Use cnf_GetAttributes() to return the current
attributes for the conference.

9. If desired, enable notification events for the conference using cnf_EnableEvents(). Events
are contained in the CNF_EVENT_INFO data structure.

10. Open a party device handle using cnf_OpenParty(). This function returns a unique SRL
device handle for the party.

Conferencing API Programming Guide — August 2006 21

Application Development Guidelines

11. If desired, you can specify attributes for a party using cnf_SetAttributes(). Attributes are
contained in the CNF_ATTR data structure. Use cnf_GetAttributes() to return the current
attributes for the party.

12. Before a party can participate in a conference, you must connect this party to a supported
technology device using dev_Connect(). Examples of supported technology devices include a
voice device (dxxxB1C1) and an IP device (ipmB1C1). See Section 1.3, “Understanding How
Conferences are Formed”, on page 10 for details on supported technology devices. See the
Device Management API Library Reference for details on device management functions.

Note: Depending on your use case, you can choose to issue dev_Connect() either before or
after performing the cnf_AddParty() operation in Step 13. If you issue
dev_Connect() after adding a party, you must wait for this function to successfully
complete before streaming can take place.

13. Using cnf_AddParty(), add a party to the conference created in step 7. This function takes the
party device handle returned by cnf_OpenParty() as an argument. The party created
consumes a party resource.

14. Add more parties to the conference as needed. There is a limit to the number of parties that can
be added to a conference (the count of resources was obtained in step 3). However, if the limit
is reached, you can add parties using the conference bridging feature. For more information on
bridging, see Section 5.4, “Conference Bridging”, on page 21.

15. Terminate your application in an orderly fashion. For example, disable events, close all
devices, and so on. For more information, see Section 5.5, “Terminating an Application”, on
page 22.

5.4 Conference Bridging

If a conference expands beyond the number of parties permitted by the Intel NetStructure® Host
Media Processing software license in use and, if applicable, the media load in use on the board, you
can create a second conference to support additional conferees. The two conferences are connected
via a conference bridge. Conference bridging allows all parties in two or more conferences to speak
with and/or listen to one another.

The following guidelines for creating a conference bridge assume that you have already created
two conferences and added the desired number of parties for each conference using the instructions
in Section 5.3, “Creating a Conference”, on page 20.

• Dedicate a party (party1) in conference A to serve as the bridge to conference B. Likewise,
dedicate a party (party2) in conference B to serve as the bridge to conference A.

• Connect party1 in conference A to party2 in conference B using dev_Connect(), a function in
the Device Management API library. See the Device Management API Library Reference for
details on device management functions.

The following rules apply to conference bridging:

• Each bridge that is created consumes two licensed party resources, one from each of the
conferences involved in the bridge.

22 Conferencing API Programming Guide — August 2006

Application Development Guidelines

• Even though two (or more) conferences can be bridged together, the attributes and settings of
each conference remain unchanged. The application is responsible for managing each
conference and conference related events separately.

• The coach/pupil feature does not span conference bridges. Coach and pupil must be in the
same conference.

5.5 Terminating an Application

Party resources and conference resources are not released when an application terminates. The
conferencing software is designed in this way to allow conferences to stay active when a process
exits. Therefore, you are responsible for terminating the application properly. Similarly, if an error
condition abnormally terminates the application, individual conferences will not be closed nor will
individual channels be closed. In this case, design the application to recover and manage the
existing conferences or to shut down devices in an orderly fashion.

When your process completes, devices should be shut down in an orderly fashion. Tasks that are
performed to terminate an application generally include:

• disabling events by calling cnf_DisableEvents()

• closing all devices using the appropriate function such as cnf_CloseParty(),
cnf_CloseConference(), cnf_Close(), dx_close(), and so on

• breaking the connection between the party device and other supported device using
dev_Disconnect()

Note: Standard Runtime Library event management functions (such as sr_dishdlr(), which disables an
event handler) must be called before closing the device that is sending the handler event
notifications. See Chapter 3, “Event Handling” for more information about handling events.

5.6 Data Structure Considerations

Take note of the following consideration when working with data structures:

• Each data structure in the conferencing library has a version number field. This version
number is used to ensure that an application is binary compatible with future changes to this
data structure. This field is currently reserved for future use. Use the version number as
specified in the header file, cnflib.h, and as documented in the Conferencing API Library
Reference.

Conferencing API Programming Guide — August 2006 23

Application Development Guidelines

5.7 Multiprocessing Considerations

Having multiple processes acting on the same board is undesirable. It is recommended to use a
single process per board, or a single process for all boards, rather than more than one process acting
on the same board. Consider the scenario where there are multiple boards in the system and each
board is being controlled by a different process.

The following considerations apply when multiple processes control the same board:

• You must provide your own synchronization to manage resources in each process.

• If process A creates a conference and process B wants to use that conference, process A must
pass the name of the conference to process B.

• If process A deletes a conference and process B has a handle to that conference, then process B
can no longer use that conference. Process A must notify process B of its action.

5.8 Multithreading Considerations

The following considerations apply to multithreading:

• The conferencing library supports multithreading. You can manage multiple conferences or
multiple boards within the same thread; however, it is not recommended that you manage the
same conference or the same board across multiple threads.

• The resource counts returned by cnf_GetDeviceCount() are a snapshot in time. If another
thread is adding/deleting a party or creating/deleting a conference, the counts will change and
the thread will no longer have the most current count. There is a gap between the time you
issue this function and when you actually use the resources. Be sure that threads use
synchronization when making decisions based on the counts returned by
cnf_GetDeviceCount().

• While the API functions allow for concurrent use of party, conference and board handles, you
must be aware of “logical” concurrency issues, such as maintaining the count of resources.

The cnf_GetDeviceCount() function returns a snapshot of available parties and maximum
parties that can be added to a conference. Because it is a snapshot of the state of the firmware
at any given time, the values returned are only valid until other parties and conferences are
added or removed.

In a multithreaded application, you should maintain local counts that are obtained when the
application initializes (through cnf_GetDeviceCount()) and protect those counts with
mutexes as needed; for example, if two or more threads in the application need to make
decisions based on the number of parties and conferences available at any given time. By
doing so, race conditions can be avoided; for example, if a thread thinks one more party
resource is available while another thread consumes it.

24 Conferencing API Programming Guide — August 2006

Application Development Guidelines

Conferencing API Programming Guide — August 2006 25

66.Using Active Talker

This chapter provides information about the active talker feature.

An active talker refers to a party in a conference who is providing “non-silence” energy. Active
talkers are determined by the loudness or strength of their “non-silence” energy. The active talker
feature sums the three most active talkers in a conference, so that the conversation doesn’t get
drowned out when too many people talk at once. The active talker feature also provides data on
active talkers through the cnf_GetActiveTalkerList() function.

The active talker feature is enabled on a board basis. To turn on the active talker feature, use
cnf_SetAttributes() with the ECNF_BRD_ATTR_ACTIVE_TALKER enumeration enabled. To
retrieve a list of active talkers, use cnf_GetActiveTalkerList().

Note: The active talker feature does not span conference bridges; that is, there is no active talker summing
across conference bridges and active talkers are reported separately for each conference.

The cnf_GetActiveTalkerList() function provides a snapshot of the active talkers at a given
moment. By default, the snapshot is updated every second. To change this value and specify how
frequently the active talker status is updated, use the cnf_SetAttributes() function with the
ECNF_BRD_ATTR_NOTIFY_INTERVAL enumeration and specify a value in 10 msec units. If a
low value is used, it can affect system performance due to the more frequent updating of the status
(which results in a high quantity of internal notification messages). If a high value is used, it will
result in less frequent updating on active talkers, but the non-silence energy by a conferee may not
be reported if it occurs between notification updates. For example, if the notification interval is set
to 2 seconds and a conferee only says “yes” or “no” quickly in between notifications, that
vocalization by the conferee will not be reported.

26 Conferencing API Programming Guide — August 2006

Using Active Talker

Conferencing API Programming Guide — August 2006 27

77.Using Volume Control

This chapter provides information about controlling the volume level in a conference.

A party in a conference may wish to change the volume level of the received signal. This is
accomplished using the volume control feature.

The cnf_SetDTMFControl() function allows the application to define the DTMF digits that cause
the volume level to be adjusted up, down, or back to the default. This function points to the
CNF_DTMF_CONTROL_INFO structure which specifies whether volume control is enabled or
not and contains details on the digits used for volume control. Volume control is enabled on a
board basis.

The cnf_GetDTMFControl() function returns information on the DTMF digits used to control
the volume.

The default volume or origin is 0 dB. Volume is incremented or decremented by 2 dB at a time. The
maximum value for the volume is 18 dB and the minimum value is -18 dB.

28 Conferencing API Programming Guide — August 2006

Using Volume Control

Conferencing API Programming Guide — August 2006 29

88.Building Applications

This chapter provides information on building applications using the conferencing API library. The
following topics are discussed:

• Compiling and Linking . 29

• Variables for Compiling and Linking . 31

8.1 Compiling and Linking

The following topics discuss compiling and linking requirements:

• Include Files

• Required Libraries

8.1.1 Include Files

Function prototypes and symbolic defines are determined in include files, also known as header
files. Applications that use conferencing library functions must contain statements for include files
in this form, where <filename> represents the include file name:

#include <filename.h>

The following header files must be included in the application code in the order shown prior to
calling the conferencing library functions:

srllib.h
Contains function prototypes and equates for the Standard Runtime Library.

Note: srllib.h must be included in code before all other Intel® Dialogic® header files.

cnflib.h
The primary header file for the conferencing library. Contains function prototypes and
symbolic defines.

cnferrs.h
Contains equates for conferencing error codes.

cnfevts.h
Contains equates for conferencing event codes.

devmgmt.h
Contains function prototypes and symbolic defines for the device management library.

30 Conferencing API Programming Guide — August 2006

Building Applications

If you use other library functions such as voice or IP media, you will have to include the header
files for that library:

dxxxlib.h
Contains function prototypes and symbolic defines for the voice library.

dtilib.h
Contains function prototypes and symbolic defines for the digital network interface library.

gclib.h
The primary header file for the Global Call library; contains function prototypes and symbolic
defines for this library.

ipmerror.h
Contains variables for IP media library error codes.

ipmlib.h
Contains function prototypes and symbolic defines for the IP media library.

8.1.2 Required Libraries

Windows

In Windows, you must link the following library files when compiling your conferencing
application:

libsrlmt.lib
Standard Runtime Library file. Required in all applications.

libdxxmt.lib
device management library file. Required only if the application uses voice library functions
directly; for example, dx_open().

libdtimt.lib
digital network interface library file. Required only if the application uses digital network
interface library functions directly; for example, dt_open().

libgc.lib
the primary Global Call library file. Required only if the application uses Global Call library
functions directly; for example, gc_GetResourceH().

libipm.lib
the primary IP media library file. Required only if the application uses IP media library
functions directly; for example, ipm_Open().

libdevmgmt.lib
device management library file. Required in a conferencing application.

libcnf.lib
 conferencing library file. Required in a conferencing application.

Conferencing API Programming Guide — August 2006 31

Building Applications

Linux

In Linux, you must link the following library files in the order shown when compiling your
conferencing application:

libsrl.so
Standard Runtime Library file. Required in all applications. Specify -lsrl in makefile.

libdxxx.so
the primary voice library file. Required only if the application uses voice library functions
directly; for example, dx_open(). Specify -ldxxx in makefile.

libdti.so
digital network interface library file. Required only if the application uses digital network
interface library functions directly; for example, dt_open(). Specify -ldti in makefile.

libgc.so
the primary Global Call library file. Required only if the application uses Global Call library
functions directly; for example, gc_GetResourceH(). Specify -lgc in makefile.

libipm.so
the primary IP media library file. Required only if the application uses IP media library
functions directly; for example, ipm_Open(). Specify -lipm in makefile.

libdevmgmt.so
device management library file. Required in a conferencing application. Specify -ldevmgmt
in makefile.

libcnf.so
conferencing library file. Required in a conferencing application. Specify -lcnf in makefile.

By default, the library files are located in the directory given by the INTEL_DIALOGIC_LIB
environment variable.

8.2 Variables for Compiling and Linking

The following variables provide a standardized way of referencing the directories that contain
header files and shared objects:

INTEL_DIALOGIC_INC
Variable that points to the directory where header files are stored.

INTEL_DIALOGIC_LIB
Variable that points to the directory where shared library files are stored.

These variables are automatically set at login and should be used in compiling and linking
commands. The following is an example of a compiling and linking command that uses these
variables:

cc -I${INTEL_DIALOGIC_INC} -o myapp myapp.c -L${INTEL_DIALOGIC_LIB} -lcnf -srl

Note: It is strongly recommended that you use these variables when compiling and linking applications.
The name of the variables will remain constant, but the values may change in future releases.

32 Conferencing API Programming Guide — August 2006

Building Applications

Conferencing API Programming Guide — August 2006 33

Glossary

active talker: A participant in a conference who is providing “non-silence” energy.

automatic gain control (AGC): An electronic circuit used to maintain the audio signal volume at a constant
level. AGC maintains nearly constant gain during voice signals, thereby avoiding distortion, and optimizes the
perceptual quality of voice signals by using a new method to process silence intervals (background noise).

asynchronous function: A function that allows program execution to continue without waiting for a task to
complete. To implement an asynchronous function, an application-defined event handler must be enabled to trap
and process the completed event. Contrast with synchronous function.

bit mask: A pattern which selects or ignores specific bits in a bit-mapped control or status field.

bitmap: An entity of data (byte or word) in which individual bits contain independent control or status
information.

board device: A board-level object that maps to a virtual board.

buffer: A block of memory or temporary storage device that holds data until it can be processed. It is used to
compensate for the difference in the rate of the flow of information (or time occurrence of events) when
transmitting data from one device to another.

bus: An electronic path that allows communication between multiple points or devices in a system.

busy device: A device that has one of the following characteristics: is stopped, being configured, has a
multitasking or non-multitasking function active on it, or I/O function active on it.

channel device: A channel-level object that can be manipulated by a physical library, such as an individual
telephone line connection. A channel is also a subdevice of a board.

CO (Central Office): A local phone network exchange, the telephone company facility where subscriber lines
are linked, through switches, to other subscriber lines (including local and long distance lines). The term “Central
Office” is used in North America. The rest of the world calls it “PTT”, for Post, Telephone, and Telegraph.

coach: A participant in a conference that can be heard by pupils only. A mentoring relationship exists between a
coach and a pupil.

conferee: Participant in a conference call. Synonym of party.

conference: Ability for three or more participants in a call to communicate with one another in the same call.

conferencing: Ability to perform a conference.

conference bridging: Ability for all participants in two or more established conferences to speak to and/or
listen to one another.

34 Conferencing API Programming Guide — August 2006

configuration file: An unformatted ASCII file that stores device initialization information for an application.

configuration manager: A utility with a graphical user interface (GUI) that enables you to add new boards to
your system, start and stop system service, and work with board configuration data. Also known as DCM.

CT Bus: Computer Telephony bus. A time division multiplexing communications bus that provides 4096 time
slots for transmission of digital information between CT Bus products. See TDM bus.

data structure: Programming term for a data element consisting of fields, where each field may have a different
type definition and length. A group of data structure elements usually share a common purpose or functionality.

device: A computer peripheral or component controlled through a software device driver. An Intel voice and/or
network interface expansion board is considered a physical board containing one or more logical board devices, and
each channel or time slot on the board is a device.

device channel: A voice data path that processes one incoming or outgoing call at a time (equivalent to the
terminal equipment terminating a phone line).

device driver: Software that acts as an interface between an application and hardware devices.

device handle: Numerical reference to a device, obtained when a device is opened using xx_open(), where xx is
the prefix defining the device to be opened. The device handle is used for all operations on that device.

device name: Literal reference to a device, used to gain access to the device via an xx_open() function, where
xx is the prefix defining the device to be opened.

DM3: Refers to Intel Dialogic mediastream processing architecture, which is open, layered, and flexible,
encompassing hardware as well as software components. A whole set of products from Intel are built on DM3
architecture.

driver: A software module which provides a defined interface between a program and the firmware interface.

DTMF (Dual-Tone Multifrequency): Push-button or touch-tone dialing based on transmitting a high- and a
low-frequency tone to identify each digit on a telephone keypad.

E1: A CEPT digital telephony format devised by the CCITT, used in Europe and other countries around the world.
A digital transmission channel that carries data at the rate of 2.048 Mbps (DS-1 level). CEPT stands for the
Conference of European Postal and Telecommunication Administrations. Contrast with T1.

extended attribute functions: A class of functions that take one input parameter and return device-specific
information. For instance, a voice device’s extended attribute function returns information specific to the voice
devices. Extended attribute function names are case-sensitive and must be in capital letters. See also standard
runtime library (SRL).

firmware: A set of program instructions that reside on an expansion board.

idle device: A device that has no functions active on it.

party: A participant in a conference. Synonym of conferee.

Conferencing API Programming Guide — August 2006 35

pupil: A participant in a conference that has a mentoring relationship with a coach.

resource: Functionality (for example, conferencing) that can be assigned to a call. Resources are shared when
functionality is selectively assigned to a call and may be shared among multiple calls. Resources are dedicated
when functionality is fixed to the one call.

RFU: Reserved for future use.

route: Assign a resource to a time slot.

SRL: See Standard Runtime Library.

standard attribute functions: Class of functions that take one input parameter (a valid device handle) and
return generic information about the device. For instance, standard attribute functions return IRQ and error
information for all device types. Standard attribute function names are case-sensitive and must be in capital letters.
Standard attribute functions for all Intel telecom devices are contained in the SRL. See standard runtime library
(SRL).

standard runtime library (SRL): An Intel Dialogic software resource containing event management and
standard attribute functions and data structures used by all Intel telecom devices, but which return data unique to the
device.

synchronous function: Blocks program execution until a value is returned by the device. Also called a
blocking function. Contrast with asynchronous function.

T1: A digital line transmitting at 1.544 Mbps over 2 pairs of twisted wires. Designed to handle a minimum of 24
voice conversations or channels, each conversation digitized at 64 Kbps. T1 is a digital transmission standard in
North America. Contrast with E1.

TDM (Time Division Multiplexing): A technique for transmitting multiple voice, data, or video signals
simultaneously over the same transmission medium. TDM is a digital technique that interleaves groups of bits from
each signal, one after another. Each group is assigned its own “time slot” and can be identified and extracted at the
receiving end. See also time slot.

TDM bus: Time division multiplexing bus. A resource sharing bus such as the SCbus or CT Bus that allows
information to be transmitted and received among resources over multiple data lines.

termination condition: An event or condition which, when present, causes a process to stop.

termination event: An event that is generated when an asynchronous function terminates. See also
asynchronous function.

thread (Windows): The executable instructions stored in the address space of a process that the operating
system actually executes. All processes have at least one thread, but no thread belongs to more than one process. A
multithreaded process has more than one thread that are executed seemingly simultaneously. When the last thread
finishes its task, then the process terminates. The main thread is also referred to as a primary thread; both main and
primary thread refer to the first thread started in a process. A thread of execution is just a synonym for thread.

36 Conferencing API Programming Guide — August 2006

tone clamping: (DTMF tone clamping) Mutes DTMF tones heard in a conference. If a confereee’s phone
generates a tone, the DTMF signal will not interfere with the conference. Applies to transmitted audio into the
conference and does not affect DTMF function.

time division multiplexing (TDM): See TDM (Time Division Multiplexing).

time slot: The smallest, switchable data unit on a TDM bus. A time slot consists of 8 consecutive bits of data.
One time slot is equivalent to a data path with a bandwidth of 64 kbps. In a digital telephony environment, a
normally continuous and individual communication (for example, someone speaking on a telephone) is (1)
digitized, (2) broken up into pieces consisting of a fixed number of bits, (3) combined with pieces of other
individual communications in a regularly repeating, timed sequence (multiplexed), and (4) transmitted serially over
a single telephone line. The process happens at such a fast rate that, once the pieces are sorted out and put back
together again at the receiving end, the speech is normal and continuous. Each individual, pieced-together
communication is called a time slot.

Conferencing API Programming Guide — August 2006 37

Index

A
active talker

enabling 25
feature description 10

asynchronous callback model, Linux 13

asynchronous mode programming
Linux 13

asynchronous models
Linux 13

asynchronous polled model
Linux 13

asynchronous programming model 9, 20

ATDV_ERRMSGP() 15, 17

ATDV_LASTERR() 15, 17

ATDV_NAMEP() 16

ATDV_SUBDEVS() 16

automatic gain control (AGC) 10

C
cnf_AddParty() 21

CNF_ATTR data structure 20

cnf_Close() 22

cnf_CloseConference() 22

cnf_CloseParty() 22

CNF_DEVICE_COUNT_INFO data structure 20

cnf_DisableEvents() 22

CNF_DTMF_CONTROL_INFO data structure 27

cnf_EnableEvents() 20

cnf_GetActiveTalkerList() 25

cnf_GetDeviceCount() 20, 23

cnf_GetDTMFControl() 27

cnf_Open() 20

cnf_OpenConference() 20

cnf_OpenParty() 20

cnf_SetAttributes() 20, 25

cnf_SetDTMFControl() 27

cnferrs.h 29

cnfevts.h 29

cnflib.h 29

coach/pupil 9, 22

compiling applications 29

conference bridging 21
multiprocessing considerations 23

conference device 19

conference device, opening 20

conference guidelines 20

conference monitoring 10

conference resource 22

D
dev_Connect() 21

dev_Disconnect() 22

device management library 21

devices, types 19

devmgmtlib.h 29

digit detection 10

dtilib.h 30

DTMF detection 10

DTMF tone clamping 10

dx_close() 22

dxxxlib.h 30

E
echo cancellation 10

error codes header file
conferencing 29

error codes header file, IP media 30

event codes header file, conferencing 29

G
gclib.h 30

H
header files 29

I
include files 29

INTEL_DIALOGIC_INC 31

INTEL_DIALOGIC_LIB 31

ipmerror.h 30

38 Conferencing API Programming Guide — August 2006

ipmlib.h 30

L
libcnf.lib 30

libcnf.so 31

libdevmgmt.lib 30

libdevmgmt.so 31

libdti.so 31

libdtimt.lib 30

libdxxmt.lib 30

libdxxx.so 31

libgc.lib 30

libgc.so 31

libipm.lib 30

libipm.so 31

libsrl.so 31

libsrlmt.lib 30

linking applications 29

M
monitoring a conference 10

multiprocessing considerations 23

multithreading considerations 23

N
non-signal mode, Linux asynchronous callback model 13

P
party device 19

party device, opening 20

party resource 22

polled model 13

R
resource count 23

S
signal mode, Linux asynchronous callback model 13

sr_dishdlr() 15, 22

sr_enbhdlr() 15

sr_getevtdev() 15

sr_getevttype() 15

sr_waitevt() 15

sr_waitevt(_) 13

sr_waitevtEx() 15

SRL events 13

srllib.h 29

symbolic defines 19

T
tariff tone 10

termination event 13

V
variables for compiling and linking 31

virtual board device 19

virtual board device, opening 20

volume control 10

volume control, using 27

	Contents
	Revision History
	About This Publication
	Purpose
	Applicability
	Intended Audience
	How to Use This Publication
	Related Information

	1. Product Description
	1.1 Overview
	1.2 Key Features
	1.3 Understanding How Conferences are Formed
	1.4 Relationship with Other Libraries
	1.4.1 Standard Runtime Library (SRL)
	1.4.2 Device Management API Library
	1.4.3 Voice API Library
	1.4.4 IP Media Library API
	1.4.5 Global Call API Library
	1.4.6 Digital Network Interface API Library

	2. Programming Models
	2.1 Programming Models Overview
	2.2 Asynchronous Programming Model

	3. Event Handling
	3.1 SRL Event Management Functions
	3.2 SRL Standard Attribute Functions

	4. Error Handling
	5. Application Development Guidelines
	5.1 Using Symbolic Defines
	5.2 Using Conferencing Devices
	5.3 Creating a Conference
	5.4 Conference Bridging
	5.5 Terminating an Application
	5.6 Data Structure Considerations
	5.7 Multiprocessing Considerations
	5.8 Multithreading Considerations

	6. Using Active Talker
	7. Using Volume Control
	8. Building Applications
	8.1 Compiling and Linking
	8.1.1 Include Files
	8.1.2 Required Libraries

	8.2 Variables for Compiling and Linking

	Glossary
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Updated TIPs settings to fix web compatibility issue. The PDF documents can be opened with Acrobat and Reader 4.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

